
Homological algebra solutions Week 6

1. Use Baer’s Criterion to show that Q/Z is an injective Z-module, and then
give an injective resolution of Z.

Baer’s Criterion: An R-module M is injective if and only if for every
ideal J ⊆ R, every R-morphism J → M can be lifted to a morphism
R→M .

Solution: By Baer’s Criterion, it suffices to prove the above result for
R = Z, J = (n) and M = Q/Z. Given f : nZ → Q/Z, one may construct

a Z-linear map f̄ : Z → Q/Z by setting f̄(1) =
1

n
f(n). The linearity can

be easily verified as Z is generated by 1 element and it is clear that f̄ = f
on nZ. As a result, Q/Z is injective and one can apply a similar argument
to show that Q is also injective, hence

0 → Z → Q → Q/Z → 0

an injective resolution of Z.

2. ForA an abelian group, we define its Pontrjagin dual as : A∗ = HomZ(A,Q/Z).
Show that when A is finite, we have (A∗)∗ ∼= A, and deduce that there is
an equivalence of categories FAb ∼= FAbop, where FAb is the category
of finite abelian groups. However, find an abelian group such that (A∗)∗

is not isomorphic to A.

Solution: By classification of finite Abelian groups, we may write A as
A =

⊕n
i=1 Zki

. Since HomR(−,M) commutes with the finite direct sum
for R commutative, A∗ =

⊕
Z∗
ki

and it suffices to prove (Z∗
n)

∗ = Zn.
First, we show that Z∗

n can be viewed as a finite subgroup of Q/Z, iden-
tified with Hn defined as follows:

Hn := {p
q
∈ Q/Z : q|n}

Through direct computation, one can verify that this is indeed a subgroup
with respect to addition. Now consider a linear map φ : Zn → Q/Z. φ is
uniquely determined by φ(1) and nφ(1) = 0, thus φ(1) ∈ Hn and one can
check that each element of Hn defines a such φ. As a result, we have an
isomorphism φ↔ φ(1).
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Next we show that H∗
n = Zn. For each

p

q
∈ Hn, one may define an

endomorphism

k · (−) : k · (p
q
) =

kp

q
∈ Hn ⊆ Q/Z

which is clearly equal to k · id, the sum of k identities in Hn. While
k · (−) = (k mod n) · (−), we may define a homomorphism F : Zn → H∗

n

by sending 1 to id.

To construct the inverse, for ψ ∈ H∗, consider a map G : ψ → nψ(
1

n
)

mod n. Notice that here ψ(
1

n
) is assumed to be a rational in Q in [0, 1)

instead of an element in Q/Z. G is well-defined as each equivalent class
of Q/Z contains exactly one element in [0, 1) and G(0) = 0 trivially. For
linearity of G, pick α, β ∈ H∗, we have

G(α+ β) = n(α+ β(1/n)) = nα(1/n) + nβ(1/n) = G(α) +G(β)

Hence G is well-defined. One can easily check that G ◦ F = idZn and for
F ◦ G, notice that a map ψ ∈ H∗ is uniquely determined by ψ(1/n) and
through direct computation one can see that φ(1/n) = F ◦G(1/n). This
shows that Zn

∼= H∗.

To show that (−)∗ defines an equivalence, notice that Hom(−,M) de-
fines a contravariant functor, hence (−)∗ is a functor from FAbop onto
FAb. However, it also defines a functor from FAb to FAbop: for a map
f : A → B, it is sent to Hom(f,Q/Z) : Hom(B,Q/Z) → Hom(A,Q/Z).
By inverting the arrows, we get a map Hom(f,Q/Z)op : Hom(A,Q/Z) →
Hom(B,Q/Z) in the opposite category. Thus (−)∗ defines an equiv-
alence between FAb and FAbop and (−)∗ is equivalent to (−)∗op as
(A∗op)∗ ∼= A, which also implies Hom(A,B) ∼= Hom((A∗op)∗, (B∗op)∗)
on the category of abelian groups. The isomorphism between ((−)∗)∗op

and idFAbop can be proven analogously hence we are finished.

To give a counterexample of non-finite abelian groups such that (A∗)∗ ̸= A,
we may consider Z. It is clear that Z∗ = Q/Z, however Hom(Q/Z,Q/Z) ̸=
Z, since otherwise Hom(Q/Z,Q/Z) is generated by id as a Z-module, yet
there exists a Z-linear map that sends p

q to p
nq , for n an integer. This

morphism is not generated by the identity since all maps generated by the
identity takes the form p/q → n · p/q

3. Let F : A → B be a right exact functor andU : B → C be an exact func-
tor.If A has enough projectives, show that we have a natural isomorphism
:

Li(UF ) ∼= U(Li(F ))

Solution: LetX ∈ A be an object and P•
f•−→ X be a projective resolution,
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then we first show that

U(Li(FX)) = U(kerFfi/im Ffi+1) = kerUFfi/im UFfi+1 = Li(UFX)

It suffices to show that U(kerFfi) ∼= kerUFfi and U(im Ffi+1) ∼= im UFfi+1,
since then we have U(kerFfi/im Ffi+1) ∼= kerUFfi/im UFfi+1 . As the
proof is similar we will only prove the case of kernels. Let f : Y → Z be
a morphism in B. Consider the following rows of exact sequences:

0 0 U ker f UY UZ

0 0 kerUf UY UZ

g

The first row is exact by exactness of U and the second row is exact by
definition of kernel. The map g is induced by universal property of kernels
and one can verify that the diagram is commutative. By 5-lemma we have
kerUf = U ker f . Now we may assume that f = fi and replace Y,Z by
FPi+1, FPi. This finishes the proof.
To show that there is a natural transformation between the two func-
tors,given P•

a•−→ X,Q•
b•−→ Y and a map f : X → Y (notice that this

induces a morphism between the projective resolutions),one needs to show
that the following diagram is commutative:

U(LiFX) U(LiFY )

Li(UFX) Li(UFY )

U(LiFf)

τX τY

Li(UFf)

Where τX , τY are isomorphisms obtained previously.To do this one may
consider the following diagram:

U(LnFX)

U kerFfn ∼= kerUFfn Ln(UFX)

U kerFgn ∼= kerUFgn Ln(UFY )

U(LnFY )

τX

ULn(Fφ)

i

q

UFφn Ln(UFφ)

j

p τY

The map ULn(Fφ) can be viewed as the natural map induced by UFφn

between the kernels and all sequares,triangles are commutative except
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the pair (Ln(UFφ) ◦ τX , τY ◦ U(LnFφ)). But since q(respectively q) is
the natural quotient morphism, it is an epimorphism and to verify that
Ln(UFφ)◦τX = τY ◦U(LnFφ), it suffices to verify that Ln(UFφ)◦τX◦q =
τY ◦ U(LnFφ) ◦ q. This can be done through diagram chasing:

Ln(UFφ) ◦ τX ◦ q = Ln(UFφ) ◦ i
= j ◦ UFφn

= τY ◦ p ◦ UFφn

= τY ◦ U(LnFφ) ◦ q

This finishes the proof.

4. Let R be a commutative ring, and N an R-module. Show or recall that
−⊗RN : R−Mod → R−Mod is right exact. We denote by ToriR(−, N)
the associated left derived functor. Find a projective resolution of Z/nZ,
and use it to compute ToriZ(Z/nZ,Z/mZ) for every i ≥ 0 and m ∈ Z.

Solution: we show that −⊗N is right exact. Consider an exact sequence

0 →M ′ i−→M
π−→M ′′ → 0

pass this sequence by the functor −⊗N , one gets

0 →M ′ ⊗N
i⊗N−−−→M ⊗N

π⊗N−−−→M ′′ ⊗N → 0

To prove the exactness, one may use the following two lemmas:
Lemma 1: ForM,N,P arbitrary R-modules, one has Hom(M⊗N,P ) =
Hom(M,Hom(N,P )).
Proof: One may construct a pair of isomorphisms between the two Hom
modules as follows: for φ : M ⊗N → P , there is an induced map F (φ) :
M → Hom(N,P ),such that Fφ(m)(n) = φ(m ⊗ n). Conversely, given a
map ψ : M → Hom(N,P ), there is an induced map G(ψ) : M ⊗ N,P
such that G(ψ)(m⊗ n) = ψ(m)(n).One can easily check that the two are
well-defined R-homomorphisms that are inverse to each other.□

Lemma 2: A sequence M ′ f−→ M
π−→ M ′′ → 0 is exact if and only if

for all R-module N the following sequence is exact:

0 → Hom(M ′′, N)
π̄−→ Hom(M,N)

f̄−→ Hom(M ′, N)

Proof: ⇒: The proof is trivial by definition of right exactness.
⇐: Surjectivity of π: Suppose that π is not surjective then let N =
M ′′/im π, and let q be the projection onto N , then clearly 0 ◦ π = q ◦ π,
hence π̄ is not injective, giving us a contradiction;
ker f̄ = im π̄: We have im π̄ ⊆ ker f̄ and it suffices to check that kerπ ⊆
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im f̄ . To do this, first letN =M/im f and let φ be the natural projection,
then φ◦f = 0 =⇒ φ ∈ ker f̄ = im π̄. Hence there is a ψ :M ′′ →M/im f ,
such that ψ ◦ π = φ. As a result, one has kerπ ⊆ kerψ = im f . □

By Lemma 2, to show the right exactness of tensor product, it suffices
to show the exactness of the following sequence for every R-module P :

Hom(M ′′ ⊗N,P ) → Hom(M ⊗N,P ) → Hom(M ′ ⊗N,P ) → 0

By Lemma 1, this sequence is equivalent to

Hom(M ′′,Hom(N,P )) → Hom(M,Hom)(N,P ) → Hom(M’,Hom(N,P)) → 0

Yet the last sequence is naturally exact since Hom(−,Hom(N,P )) is a left
exact functor.

For the following part the tensor product −⊗− is always tensor product
of Z-modules unless specified. Consider the following projective resolution
of Zn:

0 → Z n−→ Z → Zn → 0

Pass it by −⊗ Zm, one gets

0 → Zm
n−→ Zm → Zn ⊗ Zm → 0

Suppose that m,n are not coprime. Using M/IM = M ⊗ R/I, one
can show that Zn ⊗ Zm = Zn/mZn = Z/gcd(m,n)Z. As a result, for
i ≥ 2, Tori(Zn,Zm) = 0; By right exactness we have Tor0(Zn,Zm) =
Zgcd(n,m). Moreover Tor1(Zn,Zm) = ker(·n)⊗Zm More explicitly, we may
write this kernel as {x ∈ Zm : nx = 0 mod m} = (scm(m,n)/n)Zm =
(m/ gcd(m,n))Zm

∼= Z/(gcd(m,n))Z.

For m,n coprime, since gcd(m,n) = 1, we have mZn = Zn, hence Zn ⊗
Zm = 0 and the multiplication by n is invertible on Zm. Thus ·n is an
isomorphism and Tori(Zn,Zm) = 0,∀i ≥ 0
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