Homological algebra solutions Week 6

1. Use Baer's Criterion to show that \mathbb{Q}/\mathbb{Z} is an injective \mathbb{Z} -module, and then give an injective resolution of \mathbb{Z} .

Baer's Criterion: An R-module M is injective if and only if for every ideal $J\subseteq R$, every R-morphism $J\to M$ can be lifted to a morphism $R\to M$.

Solution: By Baer's Criterion, it suffices to prove the above result for $R=\mathbb{Z}, J=(n)$ and $M=\mathbb{Q}/\mathbb{Z}$. Given $f:n\mathbb{Z}\to\mathbb{Q}/\mathbb{Z}$, one may construct a \mathbb{Z} -linear map $\bar{f}:\mathbb{Z}\to\mathbb{Q}/\mathbb{Z}$ by setting $\bar{f}(1)=\frac{1}{n}f(n)$. The linearity can be easily verified as \mathbb{Z} is generated by 1 element and it is clear that $\bar{f}=f$ on $n\mathbb{Z}$. As a result, \mathbb{Q}/\mathbb{Z} is injective and one can apply a similar argument to show that \mathbb{Q} is also injective, hence

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

an injective resolution of \mathbb{Z} .

2. For A an abelian group, we define its $Pontrjagin\ dual\ as: A^* = \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})$. Show that when A is finite, we have $(A^*)^* \cong A$, and deduce that there is an equivalence of categories $\mathbf{FAb} \cong \mathbf{FAb^{op}}$, where \mathbf{FAb} is the category of finite abelian groups. However, find an abelian group such that $(A^*)^*$ is not isomorphic to A.

Solution: By classification of finite Abelian groups, we may write A as $A = \bigoplus_{i=1}^n \mathbb{Z}_{k_i}$. Since $\operatorname{Hom}_R(-, M)$ commutes with the finite direct sum for R commutative, $A^* = \bigoplus \mathbb{Z}_{k_i}^*$ and it suffices to prove $(\mathbb{Z}_n^*)^* = \mathbb{Z}_n$. First, we show that \mathbb{Z}_n^* can be viewed as a finite subgroup of \mathbb{Q}/\mathbb{Z} , identified with H_n defined as follows:

$$H_n := \{ \frac{p}{q} \in \mathbb{Q}/\mathbb{Z} : q|n \}$$

Through direct computation, one can verify that this is indeed a subgroup with respect to addition. Now consider a linear map $\varphi : \mathbb{Z}_n \to \mathbb{Q}/\mathbb{Z}$. φ is uniquely determined by $\varphi(1)$ and $n\varphi(1) = 0$, thus $\varphi(1) \in H_n$ and one can check that each element of H_n defines a such φ . As a result, we have an isomorphism $\varphi \leftrightarrow \varphi(1)$.

Next we show that $H_n^* = \mathbb{Z}_n$. For each $\frac{p}{q} \in H_n$, one may define an endomorphism

 $k \cdot (-) : k \cdot (\frac{p}{q}) = \frac{kp}{q} \in H_n \subseteq \mathbb{Q}/\mathbb{Z}$

which is clearly equal to $k \cdot \mathrm{id}$, the sum of k identities in H_n . While $k \cdot (-) = (k \mod n) \cdot (-)$, we may define a homomorphism $F : \mathbb{Z}_n \to H_n^*$ by sending 1 to id.

To construct the inverse, for $\psi \in H^*$, consider a map $G: \psi \to n\psi(\frac{1}{n})$ mod n. Notice that here $\psi(\frac{1}{n})$ is assumed to be a rational in \mathbb{Q} in [0,1) instead of an element in \mathbb{Q}/\mathbb{Z} . G is well-defined as each equivalent class of \mathbb{Q}/\mathbb{Z} contains exactly one element in [0,1) and G(0)=0 trivially. For linearity of G, pick $\alpha, \beta \in H^*$, we have

$$G(\alpha + \beta) = n(\alpha + \beta(1/n)) = n\alpha(1/n) + n\beta(1/n) = G(\alpha) + G(\beta)$$

Hence G is well-defined. One can easily check that $G \circ F = \mathrm{id}_{\mathbb{Z}_n}$ and for $F \circ G$, notice that a map $\psi \in H^*$ is uniquely determined by $\psi(1/n)$ and through direct computation one can see that $\varphi(1/n) = F \circ G(1/n)$. This shows that $\mathbb{Z}_n \cong H^*$.

To show that $(-)^*$ defines an equivalence, notice that $\operatorname{Hom}(-,M)$ defines a contravariant functor, hence $(-)^*$ is a functor from $\operatorname{FAb}^{\operatorname{op}}$ onto FAb . However, it also defines a functor from FAb to $\operatorname{FAb}^{\operatorname{op}}$: for a map $f:A\to B$, it is sent to $\operatorname{Hom}(f,\mathbb{Q}/\mathbb{Z}):\operatorname{Hom}(B,\mathbb{Q}/\mathbb{Z})\to\operatorname{Hom}(A,\mathbb{Q}/\mathbb{Z})$. By inverting the arrows, we get a map $\operatorname{Hom}(f,\mathbb{Q}/\mathbb{Z})^{\operatorname{op}}:\operatorname{Hom}(A,\mathbb{Q}/\mathbb{Z})\to\operatorname{Hom}(B,\mathbb{Q}/\mathbb{Z})$ in the opposite category. Thus $(-)^*$ defines an equivalence between FAb and $\operatorname{FAb}^{\operatorname{op}}$ and $(-)^*$ is equivalent to $(-)^{*\operatorname{op}}$ as $(A^{*\operatorname{op}})^*\cong A$, which also implies $\operatorname{Hom}(A,B)\cong\operatorname{Hom}((A^{*\operatorname{op}})^*,(B^{*\operatorname{op}})^*)$ on the category of abelian groups. The isomorphism between $((-)^*)^{*\operatorname{op}}$ and $\operatorname{id}_{\operatorname{FAb}^{\operatorname{op}}}$ can be proven analogously hence we are finished.

To give a counterexample of non-finite abelian groups such that $(A^*)^* \neq A$, we may consider \mathbb{Z} . It is clear that $\mathbb{Z}^* = \mathbb{Q}/\mathbb{Z}$, however $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q}/\mathbb{Z}) \neq \mathbb{Z}$, since otherwise $\operatorname{Hom}(\mathbb{Q}/\mathbb{Z}, \mathbb{Q}/\mathbb{Z})$ is generated by id as a \mathbb{Z} -module, yet there exists a \mathbb{Z} -linear map that sends $\frac{p}{q}$ to $\frac{p}{nq}$, for n an integer. This morphism is not generated by the identity since all maps generated by the identity takes the form $p/q \to n \cdot p/q$

3. Let $F: \mathbf{A} \to \mathbf{B}$ be a right exact functor and $U: \mathbf{B} \to \mathbf{C}$ be an exact functor. If \mathbf{A} has enough projectives, show that we have a natural isomorphism .

$$L_i(UF) \cong U(L_i(F))$$

Solution: Let $X \in \mathbf{A}$ be an object and $P_{\bullet} \xrightarrow{f_{\bullet}} X$ be a projective resolution,

then we first show that

$$U(L_i(FX)) = U(\ker Ff_i/\operatorname{im} Ff_{i+1}) = \ker UFf_i/\operatorname{im} UFf_{i+1} = L_i(UFX)$$

It suffices to show that $U(\ker Ff_i) \cong \ker UFf_i$ and $U(\operatorname{im} Ff_{i+1}) \cong \operatorname{im} UFf_{i+1}$, since then we have $U(\ker Ff_i/\operatorname{im} Ff_{i+1}) \cong \ker UFf_i/\operatorname{im} UFf_{i+1}$. As the proof is similar we will only prove the case of kernels. Let $f: Y \to Z$ be a morphism in **B**. Consider the following rows of exact sequences:

$$0 \longrightarrow 0 \longrightarrow U \ker f \longrightarrow UY \longrightarrow UZ$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow 0 \longrightarrow \ker Uf \longrightarrow UY \longrightarrow UZ$$

The first row is exact by exactness of U and the second row is exact by definition of kernel. The map g is induced by universal property of kernels and one can verify that the diagram is commutative. By 5-lemma we have $\ker Uf = U \ker f$. Now we may assume that $f = f_i$ and replace Y, Z by FP_{i+1}, FP_i . This finishes the proof.

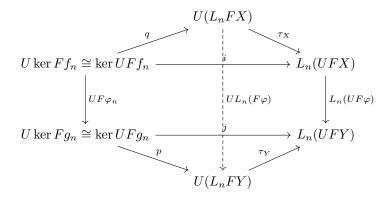
To show that there is a natural transformation between the two functors, given $P_{\bullet} \xrightarrow{a_{\bullet}} X, Q_{\bullet} \xrightarrow{b_{\bullet}} Y$ and a map $f: X \to Y$ (notice that this induces a morphism between the projective resolutions), one needs to show that the following diagram is commutative:

$$U(L_iFX) \xrightarrow{U(L_iFf)} U(L_iFY)$$

$$\downarrow^{\tau_X} \qquad \downarrow^{\tau_Y}$$

$$L_i(UFX) \xrightarrow{L_i(UFf)} L_i(UFY)$$

Where τ_X, τ_Y are isomorphisms obtained previously. To do this one may consider the following diagram:



The map $UL_n(F\varphi)$ can be viewed as the natural map induced by $UF\varphi_n$ between the kernels and all sequares, triangles are commutative except

the pair $(L_n(UF\varphi) \circ \tau_X, \tau_Y \circ U(L_nF\varphi))$. But since q (respectively q) is the natural quotient morphism, it is an epimorphism and to verify that $L_n(UF\varphi) \circ \tau_X = \tau_Y \circ U(L_nF\varphi)$, it suffices to verify that $L_n(UF\varphi) \circ \tau_X \circ q = \tau_Y \circ U(L_nF\varphi) \circ q$. This can be done through diagram chasing:

$$L_n(UF\varphi) \circ \tau_X \circ q = L_n(UF\varphi) \circ i$$

$$= j \circ UF\varphi_n$$

$$= \tau_Y \circ p \circ UF\varphi_n$$

$$= \tau_Y \circ U(L_nF\varphi) \circ q$$

This finishes the proof.

4. Let R be a commutative ring, and N an R-module. Show or recall that $-\otimes_R N: R-\mathbf{Mod} \to R-\mathbf{Mod}$ is right exact. We denote by $\operatorname{Tor}_R^i(-,N)$ the associated left derived functor. Find a projective resolution of $\mathbb{Z}/n\mathbb{Z}$, and use it to compute $\operatorname{Tor}_{\mathbb{Z}}^i(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$ for every $i \geq 0$ and $m \in \mathbb{Z}$.

Solution: we show that $-\otimes N$ is right exact. Consider an exact sequence

$$0 \to M' \xrightarrow{i} M \xrightarrow{\pi} M'' \to 0$$

pass this sequence by the functor $-\otimes N$, one gets

$$0 \to M' \otimes N \xrightarrow{i \otimes N} M \otimes N \xrightarrow{\pi \otimes N} M'' \otimes N \to 0$$

To prove the exactness, one may use the following two lemmas:

Lemma 1: For M, N, P arbitrary R-modules, one has $\operatorname{Hom}(M \otimes N, P) = \operatorname{Hom}(M, \operatorname{Hom}(N, P))$.

Proof: One may construct a pair of isomorphisms between the two Hom modules as follows: for $\varphi: M \otimes N \to P$, there is an induced map $F(\varphi): M \to \operatorname{Hom}(N,P)$, such that $F\varphi(m)(n) = \varphi(m \otimes n)$. Conversely, given a map $\psi: M \to \operatorname{Hom}(N,P)$, there is an induced map $G(\psi): M \otimes N, P$ such that $G(\psi)(m \otimes n) = \psi(m)(n)$. One can easily check that the two are well-defined R-homomorphisms that are inverse to each other. \square

Lemma 2: A sequence $M' \xrightarrow{f} M \xrightarrow{\pi} M'' \to 0$ is exact if and only if for all R-module N the following sequence is exact:

$$0 \to \operatorname{Hom}(M'',N) \xrightarrow{\bar{\pi}} \operatorname{Hom}(M,N) \xrightarrow{\bar{f}} \operatorname{Hom}(M',N)$$

Proof: \Rightarrow : The proof is trivial by definition of right exactness.

 \Leftarrow : Surjectivity of π : Suppose that π is not surjective then let $N = M''/\text{im } \pi$, and let q be the projection onto N, then clearly $0 \circ \pi = q \circ \pi$, hence $\bar{\pi}$ is not injective, giving us a contradiction;

 $\ker \bar{f} = \operatorname{im} \bar{\pi}$: We have $\operatorname{im} \bar{\pi} \subseteq \ker \bar{f}$ and it suffices to check that $\ker \pi \subseteq \ker \bar{f}$

im \bar{f} . To do this, first let $N=M/\mathrm{im}\ f$ and let φ be the natural projection, then $\varphi\circ f=0 \implies \varphi\in\ker\bar{f}=\mathrm{im}\ \bar{\pi}$. Hence there is a $\psi:M''\to M/\mathrm{im}\ f$, such that $\psi\circ\pi=\varphi$. As a result, one has $\ker\pi\subseteq\ker\psi=\mathrm{im}\ f$. \square

By Lemma 2, to show the right exactness of tensor product, it suffices to show the exactness of the following sequence for every R-module P:

$$\operatorname{Hom}(M''\otimes N,P)\to \operatorname{Hom}(M\otimes N,P)\to \operatorname{Hom}(M'\otimes N,P)\to 0$$

By Lemma 1, this sequence is equivalent to

$$\operatorname{Hom}(M'',\operatorname{Hom}(N,P)) \to \operatorname{Hom}(M,\operatorname{Hom})(N,P) \to \operatorname{Hom}(M',\operatorname{Hom}(N,P)) \to 0$$

Yet the last sequence is naturally exact since $\operatorname{Hom}(-,\operatorname{Hom}(N,P))$ is a left exact functor.

For the following part the tensor product $-\otimes$ – is always tensor product of \mathbb{Z} -modules unless specified. Consider the following projective resolution of \mathbb{Z}_n :

$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}_n \to 0$$

Pass it by $-\otimes \mathbb{Z}_m$, one gets

$$0 \to \mathbb{Z}_m \xrightarrow{n} \mathbb{Z}_m \to \mathbb{Z}_n \otimes \mathbb{Z}_m \to 0$$

Suppose that m, n are not coprime. Using $M/IM = M \otimes R/I$, one can show that $\mathbb{Z}_n \otimes \mathbb{Z}_m = \mathbb{Z}_n/m\mathbb{Z}_n = \mathbb{Z}/\gcd(m,n)\mathbb{Z}$. As a result, for $i \geq 2$, $\operatorname{Tor}_i(\mathbb{Z}_n,\mathbb{Z}_m) = 0$; By right exactness we have $\operatorname{Tor}_0(\mathbb{Z}_n,\mathbb{Z}_m) = \mathbb{Z}_{\gcd(n,m)}$. Moreover $\operatorname{Tor}_1(\mathbb{Z}_n,\mathbb{Z}_m) = \ker(\cdot n) \otimes \mathbb{Z}_m$ More explicitly, we may write this kernel as $\{x \in \mathbb{Z}_m : nx = 0 \mod m\} = (\operatorname{scm}(m,n)/n)\mathbb{Z}_m = (m/\gcd(m,n))\mathbb{Z}_m \cong \mathbb{Z}/(\gcd(m,n))\mathbb{Z}$.

For m, n coprime, since $\gcd(m, n) = 1$, we have $m\mathbb{Z}_n = \mathbb{Z}_n$, hence $\mathbb{Z}_n \otimes \mathbb{Z}_m = 0$ and the multiplication by n is invertible on \mathbb{Z}_m . Thus n is an isomorphism and $\operatorname{Tor}^i(\mathbb{Z}_n, \mathbb{Z}_m) = 0, \forall i \geq 0$