Homological algebra solutions Week 6

1. Use Baer’s Criterion to show that Q/Z is an injective Z-module, and then
give an injective resolution of Z.

Baer’s Criterion: An R-module M is injective if and only if for every
ideal J C R, every R-morphism J — M can be lifted to a morphism
R — M.

Solution: By Baer’s Criterion, it suffices to prove the above result for
R=17,J =(n)and M = Q/Z. Given f : nZ — Q/Z, one may construct

_ - 1
a Z-linear map f : Z — Q/Z by setting f(1) = —f(n). The linearity can
n

be easily verified as Z is generated by 1 element and it is clear that f = f
on nZ. As aresult, Q/Z is injective and one can apply a similar argument
to show that Q is also injective, hence

0-2—-Q—-Q/Z—0

an injective resolution of Z. O

2. For A an abelian group, we define its Pontrjagin dual as: A* = Homy (A, Q/Z).
Show that when A is finite, we have (A*)* = A, and deduce that there is
an equivalence of categories FAb = FADb°P, where FAD is the category
of finite abelian groups. However, find an abelian group such that (A*)*
is not isomorphic to A.

Solution: By classification of finite Abelian groups, we may write A as
A =@, | Zy,. Since Hompg(—, M) commutes with the finite direct sum
for R commutative, A* = P Z;, and it suffices to prove (Z;,)* = Zy.
First, we show that Z7 can be viewed as a finite subgroup of Q/Z, iden-
tified with H,, defined as follows:

H, = {g € Q/Z: qn}

Through direct computation, one can verify that this is indeed a subgroup
with respect to addition. Now consider a linear map ¢ : Z,, - Q/Z. ¢ is
uniquely determined by ¢(1) and np(1) = 0, thus ¢(1) € H,, and one can
check that each element of H,, defines a such . As a result, we have an
isomorphism ¢ < ¢(1).



Next we show that H} = Z,. For each b € H,, one may define an
q
endomorphism

Py _ kP
k(o) ik ()= € HoCQ/Z

which is clearly equal to k - id, the sum of k identities in H,. While
k- (=)= (k mod n)-(-), we may define a homomorphism F : Z,, — H}
by sending 1 to id.
1
To construct the inverse, for ¢ € H* consider a map G : ¥ — ny(—)
n
1
mod n. Notice that here w(ﬁ) is assumed to be a rational in Q in [0,1)
instead of an element in Q/Z. G is well-defined as each equivalent class
of Q/Z contains exactly one element in [0,1) and G(0) = 0 trivially. For
linearity of G, pick «, 8 € H*, we have

Gla+ ) =n(a+p(1/n)) = na(l/n) +nb(1/n) = G(a) + G(B)

Hence G is well-defined. One can easily check that G o F' = idz, and for
F o G, notice that a map 1) € H* is uniquely determined by ¢ (1/n) and
through direct computation one can see that ¢(1/n) = F o G(1/n). This
shows that Z,, = H*.

To show that (—)* defines an equivalence, notice that Hom(—, M) de-
fines a contravariant functor, hence (—)* is a functor from FAb®°? onto
FAb. However, it also defines a functor from FAb to FAb®P: for a map
f:+A— B, it is sent to Hom(f,Q/Z) : Hom(B,Q/Z) — Hom(A,Q/Z).
By inverting the arrows, we get a map Hom(f,Q/Z)°P : Hom(A,Q/Z) —
Hom(B,Q/Z) in the opposite category. Thus (—)* defines an equiv-
alence between FAb and FAb°P and (—)* is equivalent to (—)*°P as
(A*°P)* =~ A which also implies Hom(A, B) = Hom((A*°P)*, (B*°P)*)
on the category of abelian groups. The isomorphism between ((—)*)*°P
and idgaper can be proven analogously hence we are finished.

To give a counterexample of non-finite abelian groups such that (A*)* #£ A,
we may consider Z. It is clear that Z* = Q/Z, however Hom(Q/Z,Q/Z) #
Z, since otherwise Hom(Q/Z,Q/Z) is generated by id as a Z-module, yet

there exists a Z-linear map that sends % to n%, for n an integer. This
morphism is not generated by the identity since all maps generated by the
identity takes the form p/q — n-p/q O

. Let F: A — B be a right exact functor andU : B — C be an exact func-
tor.If A has enough projectives, show that we have a natural isomorphism

Li(UF) = U(Li(F))

Solution: Let X € A be an object and P, Jo X bea projective resolution,



then we first show that

It suffices to show that U(ker F'f;) 2 ker UF f; and U(im F f;11) 2 im UF f;14,
since then we have U(ker F'f;/im Ff;11) 2 ker UFf;/im UF f; 11 . As the
proof is similar we will only prove the case of kernels. Let f: Y — Z be

a morphism in B. Consider the following rows of exact sequences:

0—— 0 —— Ukerf — UY — UZ

| I

0——0—> kerUf Uy Uz

The first row is exact by exactness of U and the second row is exact by
definition of kernel. The map g is induced by universal property of kernels
and one can verify that the diagram is commutative. By 5-lemma we have
kerUf = Uker f. Now we may assume that f = f; and replace Y, Z by
FP;,, FP;. This finishes the proof.

To show that there is a natural transformation between the two func-
tors,given P, Ly X, Q. b—'> Y and a map f : X — Y(notice that this
induces a morphism between the projective resolutions),one needs to show
that the following diagram is commutative:

UL FX) "Dy, Fy)

lrx lry

Li(Fx)" " wFy)

Where 7x, 7y are isomorphisms obtained previously.To do this one may
consider the following diagram:

U(L,FX)

Uker Ff, = ker UFf, ¢ Lo (UFX)

|
;
i
UF¢n UL, (F) L. (UFy)
|
|
|
I,

Uker Fg,, = ker UFg, ! L,(UFY)
U(L,FY)

The map UL, (F¢) can be viewed as the natural map induced by UFy,
between the kernels and all sequares,triangles are commutative except



the pair (L,(UFy) o 7x,7y o U(L,F)). But since g(respectively q) is
the natural quotient morphism, it is an epimorphism and to verify that
L,(UFp)orx = 1y oU(L,F), it suffices to verify that L, (UF¢)orxoq =
Ty o U(L,F) o q. This can be done through diagram chasing:

L,(UFp)orx oq=L,(UFp)oi
=joUF¢n
=71y opoUFyp,
— v o U(LaFy)oq

This finishes the proof. O

. Let R be a commutative ring, and N an R-module. Show or recall that
—~®r N : R—Mod — R—Mod is right exact. We denote by Tork(—, N)
the associated left derived functor. Find a projective resolution of Z/nZ,
and use it to compute Tork(Z/nZ, Z/mZ) for every i > 0 and m € Z.

Solution: we show that — ® N is right exact. Consider an exact sequence
0= M 5 MI M -0
pass this sequence by the functor — ® N, one gets

0>MoN2N veoN 2% M"oN =0

To prove the exactness, one may use the following two lemmas:

Lemma 1: For M, N, P arbitrary R-modules, one has Hom(M ® N, P) =
Hom (M, Hom(N, P)).

Proof: One may construct a pair of isomorphisms between the two Hom
modules as follows: for ¢ : M ® N — P, there is an induced map F(yp) :
M — Hom(N, P),such that Fo(m)(n) = ¢(m @ n). Conversely, given a
map ¢ : M — Hom(N, P), there is an induced map G(¢) : M ® N, P
such that G(¢)(m ® n) = ¥(m)(n).One can easily check that the two are
well-defined R-homomorphisms that are inverse to each other.[]

Lemma 2: A sequence M’ S M T M7 5 0 s exact if and only if
for all R-module N the following sequence is exact:

0 = Hom(M”, N) & Hom(M, N) L+ Hom(M', N

Proof: =: The proof is trivial by definition of right exactness.

<: Surjectivity of w: Suppose that 7 is not surjective then let N =
M" /im 7, and let ¢ be the projection onto N, then clearly 0o = gom,
hence 7 is not injective, giving us a contradiction;

ker f = im 7: We have im ™ C kerf and it suffices to check that kerm C



im f. To do this, first let N = M/im f and let ¢ be the natural projection,
then pof =0 = ¢ € ker f = im 7. Hence thereisa : M — M/im f,
such that 1 o m = . As a result, one has kerm C kerv) = im f. O

By Lemma 2, to show the right exactness of tensor product, it suffices
to show the exactness of the following sequence for every R-module P:

Hom(M" ® N, P) - Hom(M @ N, P) — Hom(M’' @ N, P) — 0
By Lemma 1, this sequence is equivalent to
Hom(M",Hom(N, P)) — Hom(M,Hom)(N, P) — Hom(M’,Hom(N,P)) — 0

Yet the last sequence is naturally exact since Hom(—, Hom (N, P)) is a left
exact functor.

For the following part the tensor product — ® — is always tensor product
of Z-modules unless specified. Consider the following projective resolution
of Z,,:

052%2 7,0

Pass it by — ® Z,,, one gets
0= Z = L, = Lo @ Ly — 0

Suppose that m,n are not coprime. Using M/IM = M ® R/I, one
can show that Z,, ® Z,, = Z,/mZ, = Z/gcd(m,n)Z. As a result, for
1 > 2, Tory(Zy,Zy) = 0; By right exactness we have Torg(Zy,,Zy,) =
Ziged(n,m)- Moreover Tor1(Zy, Zy,) = ker(-n) ®Z,, More explicitly, we may
write this kernel as {z € Z,, : nz = 0 mod m} = (scm(m,n)/n)Z,, =
(m/ ged(m,n))Zm = Z/(ged(m, n))Z.

For m,n coprime, since ged(m,n) = 1, we have mZ,, = Z,,, hence Z, ®
Ly, = 0 and the multiplication by n is invertible on Z,,. Thus -n is an
isomorphism and Tor*(Z,,, Z,,) = 0,¥i > 0 O



